(官方发布)2009年高考数学真题(理)(新课标)(海南宁夏)(空白卷)
2009年普通高等学校招生全国统一考试(海南卷) 数学(理工农医类) 第I卷 一, 选择题(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。 (1) 已知集合,则 A B C D 2 复数 (A)0 (B)2 (C)-2i D2 (3)对变量x, y 有观测数据理力争(,)(i1,2,,10),得散点图1;对变量u ,v 有观测数据(,)(i1,2,,10),得散点图2. 由这两个散点图可以判断。 (A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关 (C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关 (4)双曲线-1的焦点到渐近线的距离为 (A) (B)2 (C) (D)1 (5)有四个关于三角函数的命题 xR, x、yR, sinx-ysinx-siny x,sinx sinxcosyxy 其中假命题的是 (A), (B), (C), (D), (6)设x,y满足 (A)有最小值2,最大值3 (B)有最小值2,无最大值 (C)有最大值3,无最小值 (D)既无最小值,也无最大值 (7)等比数列的前n项和为,且4,2,成等差数列。若1,则 (A)7 (B)8 (C)15 (D)16 (8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)异面直线所成的角为定值 (9)已知O,N,P在所在平面内,且,且,则点O,N,P依次是的 (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂心 (D)外心 重心 内心 (注三角形的三条高线交于一点,此点为三角型的垂心) (10)如果执行右边的程序框图,输入,那么输出的各个数的合等于 (A)3 (B) 3.5 (C) 4 (D)4.5 (11)一个棱锥的三视图如图,则该棱锥的全面积(单位c)为 (A)4812 (B)4824 (C)3612 (D)3624 (12)用min{a,b,c}表示a,b,c三个数中的最小值 设f(x)min{, x2,10-x} x 0,则f(x)的最大值为 (A)4 (B)5 (C)6 (D)7 第II卷 二、填空题;本大题共4小题,每小题5分。 (13)设已知抛物线C的顶点在坐标原点,焦点为F1,0,直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________. (14)已知函数ysin(x)(0, -)的图像如图所示,则 ________________ (15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。 (16)等差数列{}前n项和为。已知-0,38,则m_______ 三、解答题解答应写出说明文字,证明过程或演算步骤。 (17)(本小题满分12分) 为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。 (18)(本小题满分12分) 某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。 (I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;w.w.w.k.s.5.u.c.o.m (II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2. 表1 生产能力分组 人数 4 8 5 3 表2 生产能力分组 人数 6 y 36 18 (i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m (ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u.c.o.m (19)(本小题满分12分) 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 (Ⅰ)求证AC⊥SD;w.w.w.k.s.5.u.c.o.m (Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小 (Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,w.w.w.k.s.5.u.c.o.m 使得BE∥平面PAC。若存在,求SEEC的值; 若不存在,试说明理由。 (20)(本小题满分12分) 已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C的方程; (Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,λ,求点M的轨迹方程,并说明轨迹是什么曲线。w.w.w.k.s.5.u.c.o.m (21)(本小题满分12分) 已知函数 (I) 如,求的单调区间; (II) 若在单调增加,在单调减少,证明 <6. w.w.w.k.s.5.u.c.o.m 请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记